Package 'ctbi'

Title: A Procedure to Clean, Decompose and Aggregate Timeseries
Description: Clean, decompose and aggregate univariate time series following the procedure "Cyclic/trend decomposition using bin interpolation" and the Logbox method for flagging outliers, both detailed in Ritter, F.: Technical note: A procedure to clean, decompose, and aggregate time series, Hydrol. Earth Syst. Sci., 27, 349–361, <doi:10.5194/hess-27-349-2023>, 2023.
Authors: Francois Ritter [cre, aut]
Maintainer: Francois Ritter <[email protected]>
License: GPL-3
Version: 2.0.5
Built: 2025-03-10 03:33:35 UTC
Source: https://github.com/fritte2/ctbi

Help Index


ctbi

Description

Please cite the following companion paper if you're using the ctbi package: Ritter, F.: Technical note: A procedure to clean, decompose, and aggregate time series, Hydrol. Earth Syst. Sci., 27, 349–361, https://doi.org/10.5194/hess-27-349-2023, 2023.

The goal of ctbi is to clean, decompose, impute and aggregate univariate time series. ctbi stands for Cyclic/Trend decomposition using Bin Interpolation: the time series is divided into a sequence of non-overlapping bins (inputs: bin.side or bin.center, and bin.period). Bins with enough data (input: bin.max.f.NA) are accepted, and otherwise rejected (their values are set to NA). The long-term trend is a linear interpolation of the mean values between successive bins. The cyclic component is the mean stack of detrended data within all accepted bins.

Outliers present in the residuals are flagged using an enhanced box plot rule (called Logbox, input: coeff.outlier) that is adapted to non-Gaussian data and keeps the type I error at 0.1n\frac{0.1}{\sqrt{n}} % (percentage of erroneously flagged outliers). Logbox replaces the original α=1.5\alpha = 1.5 constant of the box plot rule with α=A×log(n)+B+Cn\alpha = A \times \log(n)+B+\frac{C}{n}. The variable n9n \geq 9 is the sample size, C=36C = 36 corrects biases emerging in small samples, and AA and BB are automatically calculated on a predictor of the maximum tail weight (mm_{*}).

The strength of the cyclic pattern within each bin is quantified by a new metric, the Stacked Cycles Index defined as SCI=1SSresSStot1NbinSCI = 1 - \frac{SS_{res}}{SS_{tot}} - \frac{1}{N_{bin}}. The variable SStotSS_{tot} is the sum of the squared detrended data, SSresSS_{res} is the sum of the squared detrended & deseasonalized data, and NbinN_{bin} is the number of accepted bins. A value of SCI0SCI \leq 0 is associated with no cyclicity, while SCI=1SCI = 1 is associated with a perfectly cyclic signal. Data can be imputed if SCIminSCISCI_{min} \leq SCI (input: SCI.min). Finally, data are aggregated in each bin (input: bin.FUN).

Important functions of the package: ctbi, ctbi.outlier (flag outliers in univariate datasets with the Logbox method) and ctbi.plot (plot the time series).

Usage

ctbi(
  data.input,
  bin.side,
  bin.period,
  bin.center = NULL,
  bin.FUN = "mean",
  bin.max.f.NA = 0.2,
  SCI.min = 0.6,
  coeff.outlier = "auto",
  ylim = c(-Inf, +Inf)
)

Arguments

data.input

two columns data.frame (or data.table) with the first column being the time component (POSIXct, Date or numeric) and the second column the value (numeric)

bin.side

one side of any bin (same class as the time component)

bin.period

time interval between two sides of a bin. If the time component x.t of data.input is numeric, bin.period is numeric. If x.t is POSIXct or Date, bin.period = 'k units', with k an integer and units = (seconds, minutes, hours, days, weeks, half-months, months, years, decades, centuries, millenaries)

bin.center

if bin.side is not specified, one center of a bin (same class as the time component)

bin.FUN

character ('mean', 'median' or 'sum') that defines the aggregating operator

bin.max.f.NA

numeric between 0 and 1 that specifies the maximum fraction of missing values for a bin to be accepted. The minimum number of non-NA points for a bin to be accepted is bin.size.min.accepted = bin.size*(1-bin.max.f.NA) with bin.size the number of points per bin

SCI.min

numeric between 0 and 1 that is compared to the Stacked Cycles Index (SCI). If SCI > SCI.min, missing values are imputed in accepted bins with the sum of the long-term and cyclic components. If SCI.min = NA, no values are imputed

coeff.outlier

one of coeff.outlier = 'auto' (default value), coeff.outlier = 'gaussian', coeff.outlier = c(A,B,C) or coeff.outlier = NA. If coeff.outlier = 'auto', C = 36 and the coefficients A and B are calculated on mm_{*}. If coeff.outlier = 'gaussian', coeff.outlier = c(0.08,2,36), adapted to the Gaussian distribution. If coeff.outlier = NA, no outliers are flagged

ylim

numeric vector of length 2 that defines the range of possible values. Values strictly below ylim[1] or strictly above ylim[2] are set to NA. Values equal to ylim[1] or ylim[2] are discarded from the residuals

Value

A list that contains:

data0, the raw dataset (same class as data.input), with 9 columns: (i) time; (ii) outlier-free and imputed data; (iii) index.bin: index of the bins associated with each data points (the index is negative if the bin is rejected); (iv) long.term: long-term trend; (v) cycle: cyclic component; (vi) residuals: residuals including the outliers; (vii) outliers: quarantined outliers; (viii) imputed: value of the imputed data points; (ix) time.bin: relative position of the data points in their bins, between 0 and 1

data1, the aggregated dataset (same class as data.input), with 10 columns: (i) aggregated time (center of the bins); (ii) aggregated data; (iii) index.bin: index of the bin (negative value if the bin is rejected); (iv) bin.start: start of the bin; (v) bin.end: end of the bin; (vi) n.points: number of points per bin (including NA values); (vii) n.NA: number of NA values per bin, originally; (viii) n.outliers: number of outliers per bin; (ix) n.imputed: number of imputed points per bin; (x) variability associated with the aggregation (standard deviation for the mean, MAD for the median and nothing for the sum)

mean.cycle, a dataset (same class as data.input) with bin.size rows and 4 columns: (i) generic.time.bin1: time of the first bin; (ii) mean: the mean stack of detrended data; (iii) sd: the standard deviation on the mean; (iv) time.bin: relative position of the data points in the bin, between 0 and 1

summary.bin, a vector that contains bin.size (median number of points in non-empty bins), bin.size.min.accepted (minimum number of points for a bin to be accepted) and SCI

summary.outlier, a vector that contains A, B, C, mm_{*}, the size of the residuals (n), and the lower and upper outlier threshold

Examples

# example of the contaminated sunspot data
example1 <- data.frame(year = 1700:1988,sunspot = as.numeric(sunspot.year))
example1[sample(1:289,30),'sunspot'] <- NA # contaminate data with missing values
example1[c(5,30,50),'sunspot'] <- c(-50,300,400) # contaminate data with outliers
example1 <- example1[-(70:100),] # create gap in the data
bin.period <- 11 # aggregation performed every 11 years (the year is numeric here)
bin.side <- 1989 # give one side of a bin
bin.FUN <- 'mean'
bin.max.f.NA <- 0.2 # maximum of 20% of missing data per bin
ylim <- c(0,Inf) # negative values are impossible

list.main <- ctbi(example1,bin.period=bin.period,
                       bin.side=bin.side,bin.FUN=bin.FUN,
                       ylim=ylim,bin.max.f.NA=bin.max.f.NA)
data0.example1 <- list.main$data0 # cleaned raw dataset
data1.example1 <- list.main$data1 # aggregated dataset.
mean.cycle.example1 <- list.main$mean.cycle # this data set shows a moderate seasonality
summary.bin.example1 <- list.main$summary.bin # confirmed with SCI = 0.50
summary.outlier.example1 <- list.main$summary.outlier

plot(mean.cycle.example1[,'generic.time.bin1'],
     mean.cycle.example1[,'mean'],type='l',ylim=c(-80,80),
     ylab='sunspot cycle',
     xlab='11 years window')
lines(mean.cycle.example1[,'generic.time.bin1'],
      mean.cycle.example1[,'mean']+mean.cycle.example1[,'sd'],type='l',lty=2)
lines(mean.cycle.example1[,'generic.time.bin1'],
      mean.cycle.example1[,'mean']-mean.cycle.example1[,'sd'],type='l',lty=2)
title(paste0('mean cycle (moderate cyclicity: SCI = ',summary.bin.example1['SCI'],')'))
# plot tool:
ctbi.plot(list.main,show.n.bin=10)

# example of the beaver data
temp.beaver <- beaver1[,'temp']
t.char <- as.character(beaver1[,'time'])
minutes <- substr(t.char,nchar(t.char)-1,nchar(t.char))
hours <- substr(t.char,nchar(t.char)-3,nchar(t.char)-2)
hours[hours==""] <- '0'
days <- c(rep(12,91),rep(13,23))
time.beaver <- as.POSIXct(paste0('2000-12-',days,' ',hours,':',minutes,':00'),tz='UTC')
example2 <- data.frame(time=time.beaver,temp=temp.beaver)

bin.period <- '1 hour' # aggregation performed every hour
bin.side <- as.POSIXct('2000-12-12 00:00:00',tz='UTC') # give one side of a bin
bin.FUN <- 'mean' # aggregation operator
bin.max.f.NA <- 0.2 # maximum of 20% of missing data per bin
ylim <- c(-Inf,Inf)
list.main <- ctbi(example2,bin.period=bin.period,
                 bin.side=bin.side,bin.FUN=bin.FUN,
                 ylim=ylim,bin.max.f.NA=bin.max.f.NA)
data0.example2 <- list.main$data0 # cleaned raw dataset
data1.example2 <- list.main$data1 # aggregated dataset.
lower.threshold <- list.main$summary.outlier['lower.outlier.threshold']
upper.threshold <- list.main$summary.outlier['upper.outlier.threshold']
hist(data0.example2[,'residuals'],xlim=c(-0.5,0.5),30,main='beaver residuals')
abline(v=c(lower.threshold,upper.threshold),col='red',lwd=2) # show the histogram of the residuals

ctbi.cycle

Description

Calculate the mean (or median) stack of the detrended data for all bins, and add the cyclic component column to data0.

Usage

ctbi.cycle(data0, bin.size, outliers.checked)

Arguments

data0

data.table with the columns x (time series), y (values), time.bin (position of x between 0 and 1 with respect to the bin boundaries), cycle.index (index between 1 and bin.size attached to time.bin), and long.term (the long-term trend)

bin.size

median number of points within all non-empty bins

outliers.checked

boolean to indicate if the median (outliers.checked = FALSE) or the mean (outliers.checked = TRUE) should be used to calculate the stack

Value

A list that contains data0 (data0.l) and a data.table that contains the mean (or median) stack of all accepted bins (FUN.cycle.l)

Examples

library(data.table)
x <- seq(from=as.Date('2001-01-01'),to=as.Date('2010-12-01'),by='1 month')
y <- 3*cos(2*pi*(0:(length(x)-1))/12)+runif(length(x))
bin.size <- 12
outliers.checked <- TRUE
time.bin <- rep(((1:bin.size)/bin.size)-(1/(2*bin.size)),10)
cycle.index <- findInterval(time.bin,(1:(bin.size-1))/bin.size)+1
long.term <- rep(0,length(x))
data0 <- data.table(x=x,y=y,cycle.index=cycle.index,long.term=long.term,time.bin=time.bin)
list.cycle <- ctbi.cycle(data0,bin.size,outliers.checked)
data0.with.cyclic.component <- list.cycle$data0.l
mean.cycle <- list.cycle$FUN.cycle.l

ctbi.long.term

Description

Calculate the long-term trend with a linear interpolation between the mean (or median) of bins defined between two consecutive centers. Bins defined between two consecutive sides are calculated as well to complete for missing values if they have neighbors. Bins without sufficient data are discarded.

Usage

ctbi.long.term(data0, n.bin.min, seq.bin.side, outliers.checked)

Arguments

data0

data.table with the columns x (time series), y (values), side.index (index associated with each bin defined between two consecutive centers) and index.bin (index associated with each bin defined between two consecutive sides)

n.bin.min

minimum number of points for a bin to be accepted

seq.bin.side

sequence of the sides of the bins

outliers.checked

boolean to indicate if the median (outliers.checked = FALSE) or the mean (outliers.checked = TRUE) should be used to calculate the long-term trend

Value

data0 with the long-term trend added (column long.term)

Examples

library(data.table)
x <- seq(from=as.Date('2001-01-01'),to=as.Date('2010-12-01'),by='1 month')
y <- 3*cos(2*pi*(0:(length(x)-1))/12)+runif(length(x))
outliers.checked <- TRUE
seq.bin.side <- seq(from=as.Date('2001-01-01'),to=as.Date('2011-01-01'),by='1 year')
seq.bin.center <- seq(from=as.Date('2001-06-01'),to=as.Date('2010-06-01'),by='1 year')
index.bin <- findInterval(x,seq.bin.side)
side.index <- findInterval(x,seq.bin.center)+0.5
n.bin.min <- 10 # minimum of 10 months of data for a bin to be accepted
data0 <- data.table(x=x,y=y,index.bin=index.bin,side.index=side.index)
data0.with.long.term <- ctbi.long.term(data0,n.bin.min,seq.bin.side,outliers.checked)

ctbi.outlier

Description

Please cite the following companion paper if you're using the ctbi package: Ritter, F.: Technical note: A procedure to clean, decompose, and aggregate time series, Hydrol. Earth Syst. Sci., 27, 349–361, https://doi.org/10.5194/hess-27-349-2023, 2023.

Outliers in an univariate dataset y are flagged using an enhanced box plot rule (called Logbox, input: coeff.outlier) that is adapted to non-Gaussian data and keeps the type I error at 0.1n\frac{0.1}{\sqrt{n}} % (percentage of erroneously flagged outliers).

The box plot rule flags data points as outliers if they are below LL or above UU using the sample quantile qq:

L=q(0.25)α×(q(0.75)q(0.25))L = q(0.25)-\alpha \times (q(0.75)- q(0.25))

U=q(0.75)+α×(q(0.75)q(0.25))U = q(0.75)+\alpha \times (q(0.75)- q(0.25))

Logbox replaces the original α=1.5\alpha = 1.5 constant of the box plot rule with α=A×log(n)+B+Cn\alpha = A \times \log(n)+B+\frac{C}{n}. The variable n9n \geq 9 is the sample size, C=36C = 36 corrects biases emerging in small samples, and AA and BB are automatically calculated on a predictor of the maximum tail weight defined as m=max(m,m+)0.6165m_{*} = \max(m_{-},m_{+})-0.6165.

The two functions (mm_{-},m+m_{+}) are defined as:

m=q(0.875)q(0.625)q(0.75)q(0.25)m_{-} = \frac{q(0.875)- q(0.625)}{q(0.75)- q(0.25)}

m+=q(0.375)q(0.125)q(0.75)q(0.25)m_{+} = \frac{q(0.375)- q(0.125)}{q(0.75)- q(0.25)}

And finally, A=fA(A = f_{A}(mm_{*})) and B=fB(B = f_{B}(mm_{*})) with mm_{*} restricted to [0,2]. The functions (fA,fB)(f_{A},f_{B}) are defined as:

fA(x)=0.2294exp(2.9416x0.0512x20.0684x3)f_{A}(x) = 0.2294\exp(2.9416x-0.0512x^{2}-0.0684x^{3})

fB(x)=1.0585+15.6960x17.3618x2+28.3511x311.4726x4f_{B}(x) = 1.0585+15.6960x-17.3618x^{2}+28.3511x^{3}-11.4726x^{4}

Both functions have been calibrated on the Generalized Extreme Value and Pearson families.

Usage

ctbi.outlier(y, coeff.outlier = "auto")

Arguments

y

univariate data (numeric vector)

coeff.outlier

one of coeff.outlier = 'auto' (default value), coeff.outlier = 'gaussian', coeff.outlier = c(A,B,C) or coeff.outlier = NA. If coeff.outlier = 'auto', C = 36 and the coefficients A and B are calculated on mm_{*}. If coeff.outlier = 'gaussian', coeff.outlier = c(0.08,2,36), adapted to the Gaussian distribution. If coeff.outlier = NA, no outliers are flagged

Value

A list that contains:

xy, a two columns data frame that contains the clean data (first column) and the outliers (second column)

summary.outlier, a vector that contains A, B, C, mm_{*}, the size of the residuals (n), and the lower and upper outlier threshold

Examples

x <- runif(30)
x[c(5,10,20)] <- c(-10,15,30)
example1 <- ctbi.outlier(x)

ctbi.plot

Description

Plot the raw data with the bins, long-term trend and cyclic component shown.

Usage

ctbi.plot(list.main, show.outliers = TRUE, show.n.bin = 10)

Arguments

list.main

the list output from the function ctbi

show.outliers

boolean to show or hide flagged outliers

show.n.bin

number of bins shown within one graphic

Value

No return value


ctbi.timeseries

Description

Calculate the sequence of bin sides that encompasses the original time series based on a bin period and a bin side (or a bin center). The sequence of bin centers is calculated as well.

Usage

ctbi.timeseries(x.t, bin.period, bin.side, bin.center = NULL)

Arguments

x.t

original time series (date, POSIXct or numeric)

bin.period

time interval between two sides of a bin. If x.t is numeric, bin.period is numeric. If x.t is POSIXct or Date, bin.period = 'k units', with k an integer and units = (seconds, minutes, hours, days, weeks, half-months, months, years, decades, centuries, millenaries)

bin.side

one side of a bin (same class as x.t)

bin.center

if bin.side is not specified, one center of a bin (same class as x.t)

Value

A list that contains:

seq.bin.side, the sequence of bin sides (same class as bin.side)

seq.bin.center, the sequence of bin centers (same class as bin.side)

time.step.median, the median time step (numeric)

Examples

x.t <- seq(from=as.Date('2001-01-01'),to=as.Date('2010-12-01'),by='1 month')
bin.side <- as.Date('2003-10-01')
bin.period <- '4 months'
list.ts <- ctbi.timeseries(x.t,bin.period,bin.side)
seq.bin.side.Date <- list.ts$seq.bin.side
seq.bin.center.Date <- list.ts$seq.bin.center

x.t <- seq(from=as.POSIXct('2001-01-01 12:45:23'),to=as.POSIXct('2001-01-01 13:34:21'),by='18 s')
bin.side <- as.POSIXct('2001-01-01 13:00:00')
bin.period <- '1 minute' # '60 s', '60 sec', '60 seconds', '1 min' are also possible
list.ts <- ctbi.timeseries(x.t,bin.period,bin.side)
seq.bin.side.POSIXct <- list.ts$seq.bin.side
seq.bin.center.POSIXct <- list.ts$seq.bin.center

x.t <- seq(from= - 50000,to= 2000 ,by=1000)
bin.side <- 0
bin.period <- 10000
list.ts <- ctbi.timeseries(x.t,bin.period,bin.side)
seq.bin.side.numeric <- list.ts$seq.bin.side
seq.bin.center.numeric <- list.ts$seq.bin.center

hidd.check.bin.period

Description

interpret the string character bin.period used in ctbi.timeseries or ctbi.main

Usage

hidd.check.bin.period(bin.period)

Arguments

bin.period

a character string or a numeric

Value

A list that contains:

number, a numeric that indicates the value of bin.period

units, a character that indicates the unit of bin.period

bin.period.value.seconds, a numeric that indicates the value in seconds of bin.period

bin.period.value.days, a numeric that indicates the value in days of bin.period


hidd.count.NA

Description

Calculate the number of NA values in a vector

Usage

hidd.count.NA(x)

Arguments

x

a numeric vector

Value

the number of NA values in a vector


hidd.count.noNA

Description

Calculate the number of non-NA values in a vector

Usage

hidd.count.noNA(x)

Arguments

x

a numeric vector

Value

the number of non-NA values in a vector


hidd.mad

Description

Calculate the mean absolute deviation (MAD) of a vector if the number of its non-NA values is above a threshold. Otherwise, return NA.

Usage

hidd.mad(x, N.min.NA)

Arguments

x

a numeric vector

N.min.NA

a numeric threshold

Value

a numeric (either NA or the MAD of x)


hidd.mean

Description

Calculate the mean of a vector if the number of its non-NA values is above a threshold. Otherwise, return NA.

Usage

hidd.mean(x, N.min.NA)

Arguments

x

a numeric vector

N.min.NA

a numeric threshold

Value

y a numeric (either NA or the mean of x)


hidd.median

Description

Calculate the median of a vector if the number of its non-NA values is above a threshold. Otherwise, return NA.

Usage

hidd.median(x, N.min.NA)

Arguments

x

a numeric vector

N.min.NA

a numeric threshold

Value

a numeric (either NA or the median of x)


hidd.rel.time

Description

calculate the relative position of each timestep of a vector with respect to the bin boundaries.

Usage

hidd.rel.time(x, seq.bin.side)

Arguments

x

a vector (numeric, POSIXct or Date)

seq.bin.side

the sequence of bin sides

Value

the relative position of each value of x with respect to the bins in seq.bin.side (between 0 and 1)


hidd.replace

Description

Replace all values within a vector with NA values if the sum of its non-NA values is below a threshold.

Usage

hidd.replace(x, N.min.NA)

Arguments

x

a numeric vector

N.min.NA

a numeric threshold

Value

the vector x


hidd.sd

Description

Calculate the standard deviation of a vector if the number of its non-NA values is above a threshold. Otherwise, return NA.

Usage

hidd.sd(x, N.min.NA)

Arguments

x

a numeric vector

N.min.NA

a numeric threshold

Value

a numeric (either NA or the standard deviation of x)


hidd.seq

Description

similar to seq, except that when 'from' starts the 29, 30 or 31 of a month, seq2 adds 5 days to 'from', run seq, and then subtracts 5 days to the output. This is done because the function seq is not consistent when time series start at the end of the months.

Usage

hidd.seq(
  from = 1,
  to = 1,
  by = ((to - from)/(length.out - 1)),
  length.out = NULL
)

Arguments

from, to

the starting and (maximal) end values of the sequence. Of length 1 unless just from is supplied as an unnamed argument.

by

number: increment of the sequence.

length.out

desired length of the sequence. A non-negative number, which for seq and seq.int will be rounded up if fractional.

Value

a vector of same class than from


hidd.sum

Description

Calculate the sum of a vector if the number of its non-NA values is above a threshold. Otherwise, return NA.

Usage

hidd.sum(x, N.min.NA)

Arguments

x

a numeric vector

N.min.NA

a numeric threshold

Value

a numeric (either NA or the sum of x)